Ciliary neurotrophic factor-treated astrocyte-conditioned medium increases the intracellular free calcium concentration in rat cortical neurons.

نویسندگان

  • Meiqun Sun
  • Hongli Liu
  • Shengping Min
  • Hongtao Wang
  • Xiaojing Wang
چکیده

Ciliary neurotrophic factor (CNTF) is involved in the activation of astrocytes. A previous study showed that CNTF-treated astrocyte-conditioned medium (CNTF-ACM) contributed to the increase of the calcium current and the elevation of corresponding ion channels in cortical neurons. On this basis, it is reasonable to assume that CNTF-ACM may increase the intracellular free calcium concentration ([Ca2+]i) in neurons. In the present study, the effects of CNTF-ACM on [Ca2+]i in rat cortical neurons were determined, and on this basis, the aim was to investigate the potential active ingredients in ACM that are responsible for this biological process. As expected, the data indicated that CNTF-ACM resulted in a clear elevation of [Ca2+]i in neurons. Additionally, the fibroblast growth factor-2 (FGF-2) contained in the CNTF-ACM was found to participate in the upregulation of [Ca2+]i. Taken together, CNTF induces the production of active factors (at least including FGF-2) released from astrocytes, which finally potentiate the increase of [Ca2+]i in cortical neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures

Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...

متن کامل

Neurotrophic factor for central neurons.

A serum-free culture of dissociated neurons from embryonic rat hippocampus has been established as a rapid and quantitative in vitro test system for neurotrophic signals in the mammalian brain. By means of this cell culture bioassay, a novel low molecular weight neurotrophic factor (NTF) could be identified. NTF is essential for in vitro brain neuron development, promoting survival and neurite ...

متن کامل

Ciliary neurotrophic factor and interleukin-6 differentially activate microglia.

Studies have shown that cytokines released following CNS injury can affect the supportive or cytotoxic functions of microglia. Interleukin-6 (IL-6)-family cytokines are among the injury factors released. To understand how microglia respond to IL-6 family cytokines, we examined the effects of ciliary neurotrophic factor (CNTF) and IL-6 on primary cultures of rat microglia. To assess the function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical reports

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2016